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LETTER TO THE EDITOR

Ginzburg–Landau theory of the cluster glass phase
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† Van der Waals–Zeeman Laboratorium, Universiteit van Amsterdam, Valckenierstraat 65,
1018 XE Amsterdam, The Netherlands
‡ Instituut Lorentz, Rijksuniversiteit Leiden Nieuwsteeg 18, 2311 SB Leiden, The Netherlands

Received 11 October 1996

Abstract. On the basis of a recent field theory for site-disordered spin glasses, a Ginzburg–
Landau free energy is proposed to describe the low-temperature glassy phase(s) of site-disordered
magnets. The prefactors of the cubic and dominant quartic terms change gradually along the
transition line in the concentration–temperature phase diagram. Either of them may vanish at
certain points (c∗, T∗), where new transition lines originate. The new phases are classified.

A simple mixture of a metallic host with a magnetic atom, such as Au1−cFec, is known to
have a rather complicated phase diagram. According to Mydosh [1] the following phases
occur at zero temperature. At very lowc there is the Kondo regime ofindependently
compensated spins in a metallic host. At somewhat larger concentrations there is a spin
glass phase ofinteracting single spinswith Tg ∝ c. For 0.5% < c < 10% the spin glass
experiences gradualcluster formation, while for 10%< c < 16% one has thecluster glass
phase. For c > 16% one enters the percolatedferromagnetic phase, which also partly
behaves as a cluster glass.

The Kondo regime and the low-concentration spin glass phase are relatively well
understood. The latter is described by an Edwards–Anderson model with RKKY
interactions. Its properties are obtained from a mean-field approach [2] and from numerical
analysis, see e.g. [3]. Whether or not a thermodynamic phase transition occurs in zero field
or even in non-zero field remains a topic of much controversy.

Although ferromagnetism by itself is well known, clustering properties of
inhomogeneous ferromagnets are far from well understood. It is known that replica
symmetry breaking may occur before the onset of ferromagnetism¶, possibly describing
Griffiths singularities.

The situation for the clustering spin glass (with clusters containing up to five atoms) and
the cluster glass (where as many as 2000 atoms may build a cluster; these clusters order in
a glassy way) is less satisfactory. Little is known about these phases. There seems to be no
experimental evidence that the given names correspond to thermodynamic phases that are
significantly different from the spin glass phase. Nevertheless, the existence of new glassy
phases is the main question we wish to investigate theoretically in this work.

§ E-mail address: nieuwenh@phys.uva.nl
‖ E-mail address: cvduin@rulgm0.leidenuniv.nl
¶ In the approach of [2] this follows immediately from the onset of SG (Tg ∼ √c) and ferromagnetic phases
(TF ∼ c) at low c. For a detailed analysis in a related model, see [4(a)]. For RSB in renormalization group flows,
see [4(b)].
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Recently, one of us [2] formulated a field theory for site-disordered Ising systems. With
the exception of the Kondo regime, this applies to the whole phase diagram of systems,
such as those mentioned above. We thus consider a system with translationally invariant
pair couplingsJ (r−r ′) with a fractionc (0< c < 1) of the lattice sites occupied at random.
We restrict ourselves to the second-order cumulant expansion. This description is Gaussian
in the magnetization fields, and equivalent to a variational (‘Hartree’) approximation. It
is quite close to that of the Sherrington–Kirkpatrick (SK) model since it involves only the
order parametersqαβ (= 〈sαsβ〉 for small c) and their conjugatespαβ . The replicated free
energy per spin reads

βFn = 1

2c

∫
d3k

(2π)3
∑
α

{ln(1− cβĴ (k)q)}αα + 1

2

∑
αβ

qαβpαβ

+
∞∑
l=1

γl(1− tr(l)s expX(l)) (1)

with γl = (−c)l−1/l(1 − c)l and X(l) = βH
∑

α σα + 1
2

∑
αβ pαβσασβ , where σα =

s(1)α + · · · + s(l)α denotenl replicated spins, and tr(l)s denotes the sum overs(j)α = ±1.
This expression is quite rich and embodies the effect of clustering. Indeed, by

expanding the logarithm in powers ofqα 6=β one observes an effective couplinĝJeff(k) =
Ĵ (k)/(1− cβĴ (k)qd), due to the presence of the diagonal elementsqαα ≡ qd(c, T ) < 1.
If Ĵ is peaked at somek, Ĵeff(k) will be peaked much stronger, thus exhibiting clustering
effects. WhenĴ (k) = J0 for k0 < k < k1, while vanishing elsewhere, one considers the
long-range oscillating interactionJeff(r) ∼ (k0 cosk0r − k1 cosk1r)/r

2 at larger. In the
scaling limitk1−k0 ∼ c→ 0, the mean field becomes exact. Equation (1) then has as limit
the Hopfield model and the SK model [2].

From equation (1) a Ginzburg–Landau (GL) free energy can be derived. Omitting the
paramagnetic background, eliminating theq ’s and fluctuations ofpd ≡ pαα, and denoting
pαβ again byqαβ , we end up with

βFn = −h
2

2

∑
αβ

qαβ − τ
2

∑
α

(q2)αα − w
6

∑
α

(q3)αα − y1

8

∑
αβ

q4
αβ −

y2

8

∑
αβγ

q2
αβq

2
αγ

−y3

8

∑
α

(q4)αα (2)

where nowqαα = 0 and h2 = β2H 2µ2. The prefactor of the quadratic term,τ =
(µ22− T 2/cJ2)/2, vanishes at the spin glass temperatureTg(c) ≡

√
cJ2µ22. Furthermore,

w = µ222+T 3J3/(cJ
3
2 ), y1 = 3µ2222/2+µ44/6−µ422, y3 = µ2222+T 4(J2J4−2J 2

3 )/(cJ
5
2 ),

and we have a similar expression fory2. We introduced the moments of the effective
coupling

Jl =
∫

d3k

(2π)3
[Ĵeff(k)]

l

and the spin moments

µk1...kj ≡
∞∑
l=1

γl
m
(l)
k1

m
(l)

0

· · ·
m
(l)
kj

m
(l)

0

(3)

wherem(l)k = trσ σ k exp(pdσ 2/2) with σ = s(1) + · · · + s(l).
The paramagnetic behaviour is coded in the parameterspd and qd , that satisfy the

coupled mean-field equationspd = βJ1 and qd = µ2. All information on clustering is
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contained inτ , w, and they, and therefore inµ andJl . In the limit c→ 0 µ goes to unity
and forT ∼ √c theJ3 andJ4 terms vanish, so that one recovers the GL free energy of the
SK model. The important factors then arew = 1, y1 = 2/3, while the values ofy2 (= −2)
andy3 (= 1) are irrelevant. When following the transition lineT = Tg(c) in thec–T phase
diagram as a function ofc, it is seen that the higherµ’s are rapidly oscillating functions.
For instance, ifJ3/J

3/2
2 ≈ J4/J

2
2 ≈ 0, theny1 changes sign atc = 2.7% and atc = 4.3%,

while w becomes negative at 6.7%.
Based on these observations, we are led to assume that the relevant physics near the

phase transition(s) is still contained in the GL free energy (2). However, there is no reason
to assume thatw and y1 will always be positive. (A sign change ofy1 also occurs in a
Potts glass [5].) Given the type of the lattice and the values of the spin–spin couplings, the
c–T phase diagram may exhibit a limited number of special points (c∗, T∗) where eitherw
or y1 vanishes, and new phase boundaries originate.

When theqαβ are expressed in the Parisi order parameter functionq(x), one obtains the
following free energy:

βF =
∫ 1

0
dx

{
h2

2
q(x)+ τ

2
q2(x)− w

3
q(x)T (x)+ y1

8
q4(x)

−y2+ y3

8
q2(x)

∫ 1

0
dy q2(y)+ y3

2
T 2(x)

}
(4)

with T (x) = xq2(x)/2+ q(x) ∫ 1
x

dy q(y)+ ∫ x0 dy q2(y)/2.
We first investigate the region wherew goes through zero (−1� w � 1) while y1 > 0

is fixed. In figure 1 we depict a fictitious phase diagram with such a situation. On the
side wherew > 0 one has the well known spin glass solution of Parisi type, as depicted in
figure 2(a). The interesting domain isw < 0 andτ ∼ w2, sincey2 andy3 become relevant.
In order to find an acceptable solution we assume thaty3 < −y1 so thatα ≡ √−y1/y3 < 1.
At h = 0 the spin glass order parameter function

q(x) =
w

√
y1+ y3x

2
1

3(y1+ y3x1)

x√
y1+ y3x2

(5)

has plateau valueq1 = q(x1), determined by

τ = wq1− 3
2(y1+ y3)q

2
1 + 1

2y2(1− x1)q
2
1 + 1

2y2I2 (6)

where I2 =
∫ x1

0 dy q2(y). The solution is physically acceptable as soon asy2 exceeds a
certain bound and exists for parameters such thatx1 ranges fromx1 = 0 up tox1 = α. For
(c, T ) such thatx1 → α the solution squeezes and becomes a one-step replica symmetry
breaking (1RSB) solution with lower plateau atq0 = 0 (in zero field), see figure 2(b).

For w < 0, 1RSB solutions are present in a whole domain. In general, a 1RSB occurs
in two shapes, static and dynamic. The static case describes physics on exponentially large
time scales where the system can overcome the free energy barriers between pure states.
Here one maximizes the free energy with respect tox1, which yields the plateau value

q
g
1 =

wx1
3
2y1+ 3y3x1(1− 1

2x1)
. (7)

It sets in fromx1 = 1 as a first-order phase transition without latent heat at temperature

T 1RSB
g = Tg(c)− τg ≡ Tg(c)+ w2

9|y1+ y3| . (8)
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Figure 1. c–T phase diagram for a fictitious system with a linew(c, T ) = 0. PM= paramagnet;
SG+ spin glass.

Figure 2. Shapes of the spin glass order parameter funcion. (a) standard form for infinite-
order replica symmetry breaking; (b) one-step replica symmetry breaking solution; (c) the
discontinuous SGIII function; (d) the SGIV function.

Whereas the transition from paramagnet to spin glass has a continuous specific heat, the
analogy to real glasses makes us expect that (also beyond the mean field) the specific heat
jumps downwards at the transition PM→ 1RSB. Both the SG and 1RSB phases will
exhibit a difference between field-cooled and zero-field-cooled susceptibilities.

In the mean field the metastable states have infinite lifetime. Therefore, the dynamical
1RSB equations lead to a sharp phase transition at temperatureTc > Tg [6–8]. The
thermodynamics of this dynamical transition is uncommon [9]. The entropy of the frozen
state is much below the paramagnetic one. A crucial role is played by the complexity
(configurational entropy), which is extensive. This scenario explains thermodynamically
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why the dynamical glass transition takes place: the system just goes to the available state
with lowest free energy [10]. Beyond the mean field the dynamical aspects are reflected in
the dependence on the cooling rate.

For a dynamical 1RSB phase theq1-plateau is marginally stable and equal to

qc
1 =

wx1

2y1+ y3x1(3− x1)
. (9)

This dynamical solution sets in at a larger temperature

T 1RSB
c = Tg(c)− τc ≡ Tg(c)+ w2

8|y1+ y3| . (10)

Both the static and dynamical solutions exist down to

Tsg(w) = Tg(c)− τsg≡ Tg(c)− w2

6y3

(
1+ y2

3y3(1− α)
)
. (11)

This is exactly the line where, coming from positivew, the SG solution gets squeezed into
a 1RSB solution. The full phase diagram is depicted in figure 3.

Figure 3. τ–w phase diagram for a system withy1 > 0, ys < −y1, andy2 sufficiently positive;
with w increasing from right to left it may appear in figure 1 around the point(c∗, T∗). The full
(dashed) curves are static (dynamical) transition lines.

Next we consider the situation wherey1 goes through zero, whilew > 0 is fixed. (In
the case whenw < 0 the system will already have undergone a non-perturbative first-
order transition at some negativeτ .) One now expects a transition from a spin glass phase
(y1 > 0) to a replica symmetric or Edwards–Anderson (EA) phase (y1 < 0). In the EA
phase there is no difference between field-cooled and zero-field-cooled susceptibility.

As it was the case for Parisi’s solution of the SK model, the values ofy2 and y3

are now irrelevant. However, higher-order replica symmetry breaking terms will become
relevant. All fifth-order terms have been considered for the above model. The most
dangerous one is−(y5/8)

∑
αβ q

3
αβ(q

2)αβ with y5 = 6µ22222− 4µ4222+ 2
3µ442. (For SK,

y5 = 8/3). We can absorb this term in our previous free energy using the saddle-point
equation(q2)αβ ≈ −2τqαβ/w, which amounts to replacingy1 by ỹ1 = y1 − 2τy5/w. The
most dangerous sixth-order term is−(y6/6)

∑
αβ q

6
αβ , wherey6 = 15

4 µ222222− 15
4 µ42222+

15
16µ4422+ 1

4µ6222− 1
8µ642+ 1

240µ66 (y6 = 16/15 for SK).
The interesting region is where theq4

αβ term is of same order of magnitude as theq6
αβ

term. This occurs wheny4 ≡ ỹ1w
2/2τ 2 is of order unity. At fixed small positiveτ we now
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follow the system by changingy4. We thus varyc andT over a line at fixed distanceτ to
the critical line. This is indicated by the dotted curve in figure (1), wherew should now
ready1. For y4� 1 we will have a standard SG, while fory4� −1 there is the EA phase.

Wheny6 > 0 is fixed, we find that in between the SG phase and the EA phase there is
a SG phase withq0 > 0, although there is no external field. Coming from the SG phase,q0

starts to become non-zero aty4 = 0−. For y4 → −2y6 replica symmetry is restored since
q0 approachesq1. They1–τ phase diagram for the casey6 > 0 is shown in figure 4. As it
is the case with the AT line in a field, the transition EA→ SG (q0 6= 0) may very well be
smeared beyond the mean field.

Figure 4. y1–τ phase diagram forw > 0, y6 > 0. The functionq(x) in the SG phase is drawn
in figure 2(a) for the caseq0 = 0. In the EA phaseq(x) is constant (no RSB).

Wheny6 < 0 we find a new, discontinuous order parameter function, that we call SG
III : q(x) = qc(x) for x 6 x1, while q(x) = q1 > qc(x1) for x > x1, see figure 2(c). As
for static 1RSB solutions, the plateau has stable fluctuations. Coming from the EA phase,
SG III sets in withx1 = 0, leading to irreversibility. With respect to the EA phase, the
SG III phase has a smaller replica free energy with a discontinuous slope. There occurs a
static first-order transition without latent heat but with a discontinuity in the specific heat,
as usual for glasses.

At y4 = 10|y6| the discontinuity ofq(x) disappears and the standard SG solution takes
over, see figure 5.

There are also other solutions with free energy between the ones of the EA and the SG
III states. Aty4 = |y6| a 1RSB solution with marginal lower plateau occurs, as in a Potts
glass [9]. Now the breakpoint sets in fromx1 = 0. This 1RSB solution becomes unstable
at y4 = 3|y6|, where theq0 plateau is lifted and a foot grows nearx = 0. We call this the
SG IV solution, see figure 2(d). Like the SGIII , it exists up toy4 = 10|y6|, where the
SG IV discontinuity disappears and it matches the standard SG solution (see figure 2(a)).
In analogy with the marginal 1RSB solution, we anticipate that this 1RSB-SGIV traject is
the one that occurs in dynamics.

Also in the standard region wherew and y1 are still positive some clustering effects
occur. Consider the slope of the field-cooled susceptibilityχFC = β(1−

∫ 1
0 dx q(x)). At

T −g one has dχFC/dT = −T −2
g + (wTg)

−1 dτ/dT . In mean-field models with∞RSBχFC is
usually constant belowTg, so these two terms cancel. There does not seem to be a general
reason for this. Experimentally, the values in the SG phase are usually lower than atTg.
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Figure 5. y1–τ phase diagram forw > 0, y6 > 0. In the SGIII phaseq(x) is as in figure 2(c).
Dynamicallly this phase splits up into a 1RSB phase and a SGIV phase. see figure 2(b) and
(d).

However, in the mechanically milled amorphous Co2Ge spin glass of Zhou and Bakker,
that has about 67% of magnetic atoms, one expects large clustering effects. Indeed,χFC

is monotonically decreasing withT [11]. Both these phenomena can be explained by our
formula.

So far our results mainly concern the mean field. Whether or not fluctuations change
them qualitatively is unknown.

In conclusion, we have proposed a Ginzburg–Landau free energy for site-disordered
spin glasses. It is motivated that the prefactors of the cubic and quartic terms can have
zeros. From these points new transition lines originate. We find spin glass phases of the
Parisi type (∞RSB), with 1RSB, without RSB (EA phases), and of new types, the SGIII

and SGIV phases. For the latter phases the dynamics will be of a new nature.

The authors thank J A Mydosh, G Parisi, and D Lancaster for discussion and J A Mydosh
also for a critical reading of the manuscript. ThM N’s research was made possible by the
Royal Netherlands Academy of Arts and Sciences (KNAW).
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